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Abstract

One of the primary challenges in intrusion detection is
modelling typical application behavior, so that we can rec-
ognize attacks by their atypical effects without raising too
many false alarms. We show how static analysis may be
used to automatically derive a model of application behav-
ior. The result is a host-based intrusion detection system
with three advantages: a high degree of automation, pro-
tection against a broad class of attacks based on corrupted
code, and the elimination of false alarms. We report on
our experience with a prototype implementation of this tech-
nique.

1. Introduction

Computer security has undergone a major renaissance in
the last five years. Beginning with Sun’s introduction of the
Java language and its support of mobile code in 1995, pro-
gramming languages have been a major focus of security
research. Many papers have been published applying pro-
gramming language theory to protection problems [25, 24],
especially information flow [17]. Security, however, is a
many-faceted topic, and protection and information flow ad-
dress only a subset of the problems faced in building and de-
ploying secure systems. As attackers and defenders are in
an arms race, deploying a system with strictly static but in-
complete security measures is doomed to failure: this gives
the attacker the last move, and therefore victory.

Formal methods, alone, are insufficient for building and
deploying secure systems. Intrusion detection systems have
been developed to provide an online auditing capability to
alert the defender that something appears to be wrong. Un-
fortunately, most intrusion detection systems suffer from
major problems as described in Section 2. We take a
new approach to the problem that eliminates many of these
drawbacks.

Our approach constrains the system call trace of a pro-

gram’s execution to be consistent with the program’s source
code. We assume that the program was written with be-
nign intent. This approach deals with attacks (such as buffer
overflows) that cause a program to behave in a manner in-
consistent with its author’s intent. These are the most preva-
lent security problems. Of course, some security problems
are directly attributable to faulty application logic, such as
programs that fail to check authentication information be-
fore proceeding, and one limitation of our intrusion detec-
tion system is that it does not detect attacks that exploit
logic errors. Application logic bugs, however, are dwarfed
in practice by buffer overflow problems and other vulnera-
bilities that allow for execution of arbitrary machine code
of the attacker’s choice [8, 35], and it is the latter type of
vulnerability on which we focus.

The rest of this paper is organized as follows: Section 2
discusses related work, Section 3 discusses our framework,
Section 4 discusses the models we use, Section 5 discusses
our implementation, Section 6 evaluates our results, Sec-
tion 7 discusses future work, and Section 8 concludes.

2 Related Work

Early work on intrusion detection was due to Ander-
son [1] and Denning [9]. Since then, it has become a very
active field. Most intrusion detection systems (IDS) are
based on one of two methodologies: either they generate
a model of a program’s or system’s behavior from observ-
ing its behavior on known inputs (e.g., [14]), or they require
the generation of a rule base (e.g., [3]). In both cases, these
systems then monitor execution of the deployed program or
system and raise an alarm if the execution diverges from the
model. The current model-based approaches all share one
common problem: a truly robust intrusion detection system
must solve a special case of the machine learning problem, a
classic AI problem. That is, to prevent false alarms, the IDS
must be able to infer, from statistical data, whether the cur-
rent execution of the system is valid or not. The false alarm
rate of present systems is a major problem in practice [2].
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Ko et al., and others have proposed a very natural so-
lution to this problem: every program should come with a
specification of its intended behavior [21, 19, 22, 29]. This,
of course, has been the dream of the formal methods com-
munity for 25 years, and is as yet unrealized. We believe it
is likely to remain unrealized for some time to come. Al-
though Koet al.’s specification language is simple and ad-
mits relatively compact specifications, we believe that the
need for manually written specifications will dramatically
limit the impact of this work1. We philosophically agree
with the direction of Koet al.’s work, but we propose to
side-step its main drawback by automatically deriving the
specification from the program.

3. The framework

We would like to detect the case where an application is
penetrated and then exploited to harm other parts of the sys-
tem. To this end, we define a specification of expected ap-
plication behavior, and then we monitor the actual behavior
to see if it ever deviates from the specification. We describe
first how we monitor application behavior, and next we pro-
pose techniques for automated specification construction.

To reduce the potentially huge volume of trace data, we
consider only the security-relevant behavior of the applica-
tion of interest. The monitoring strategy should then ensure
that a compromised application cannot compromise system
integrity2 while still evading detection. In general, it will
always be possible for attackers to evade detection in our
system if they do not cause any harm, but if they want to
cause harm, they will need to interact with the operating
system in a way which risks detection.

In many cases of practical interest, we may safely make
the following convenient assumption [15]:

Assumption. A compromised application cannot cause
much harm unless it interacts with the underlying operating
system, and those interactions may be readily monitored.

If—as is typically the case3—the only way to interact
with the operating system is via system calls, it suffices
to monitor just the application’s system call trace. Since
monitoring system call traces is usually straightforward in

1However, one promising direction to remedy these limitations can be
found in Ko’s recent work on blending manual rule bases with automated
specification generation [20]. Note that others have used runtime tech-
niques to identify program invariants [12]; however, because the identified
invariants concern dataflow, rather than sequencing of system calls, they
do not seem to be well-suited to intrusion detection.

2We do not consider denial of service attacks in this work.
3We do not claim that the assumption is always true. Some operating

systems are starting to include partial exceptions to this rule (e.g., user-
level networking). However, few security-critical applications use these
exceptional features, so we can simply forbid their use: therare application
which uses these features may introduce false alarms, but atleast malicious
code will not be able to exploit the special features in an attack.

practice, the bulk of the challenge will be to derive a spec-
ification of the application’s expected interaction with the
operating system.

We derive our specification of expected application be-
havior from the application source code, along with a fixed
model of the operating system. We model the application
as a transition system with some (possibly very large) set of
states along with some admissible transitions. If we ever de-
tect a system call trace that is incompatible with this transi-
tion system, we may conclude that the most likely explana-
tion is that we are under attack: for instance, the adversary
may have introduced malicious code of her own choosing
and caused it to be executed, e.g., via a buffer overrun or
format string attack. Therefore, to detect intrusions, ourba-
sic approach is to look for system call traces that could not
have been generated by the underlying transition system.

One subtlety is that the adversary may adapt to our meth-
ods. Indeed, we later introduce a new type of attack, the
mimicry attack, which applies to all intrusion detection sys-
tems and in some cases may allow the adversary to fool the
intrusion detection system by camouflaging the malicious
code so that it behaves much like the application would.
We do not have a complete defense against mimicry attacks,
but we make some progress towards quantifying resistance
against this type of attacker tactic. See Section 6 for details.

Our intrusion detection system does not detect all at-
tacks, but it does allow us to detect one of the most com-
mon effects of a penetration: execution of corrupted code.
We observe that, in practice, once an attacker has compro-
mised the target application, she will often download some
‘exploit code’ of her choosing into the application and use
it to execute various operations with the application’s privi-
leges. Since this exploit code is not originally present in the
application source code, if it is ever executed we expect to
see behavior that is incompatible with the source code and
thus to detect the attack.

One problem is that transition systems derived directly
from the source are usually too complex to be useful. We
could naively start a second ‘slave’ copy of the application
running on the same inputs in an interpreter that simulates
all interactions with the outside world, checking at every
step whether we obtain the same system call trace from both
the master and the slave. This naive replication strategy
could probably be made to work, but it has two important
disadvantages. First, replication may be hard to implement,
because it is likely to be very difficult in practice to remove
every last shred of non-determinism from the application
(e.g., random number generators, process scheduling, tim-
ing channels, interaction with the outside environment, etc.)
[23]. Second, and more importantly, the slave is exposed to
the same risks as the master: any set of inputs that tickles a
security flaw in the master is likely to trigger the same flaw
in the slave as well and thereby escape detection.
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We tackle these problems by simplifying the transition
system greatly, abstracting away unnecessary complexity.
Since we care only about the sequence of system calls is-
sued, we prune away all other aspects of the model, even
to the point of disregarding the contents of local variables,
data structures, and all other data flow. We then simulate
the simplified transition system in an interpreter with cor-
respondingly minimal operational semantics. This abstrac-
tion process has the potential to fix the problems of naive
replication: it can be very fast, because most of the code
has been pruned away; we can afford to deal with non-
determinism, since the transition system has been drasti-
cally simplified (for instance, non-deterministic finite au-
tomata are not much more expensive to simulate than deter-
ministic finite automata); and the minimal operational se-
mantics may remove many of the pitfalls of C (e.g., buffer
overrun attacks will not affect a model that ignores the con-
tents of all buffers).

To summarize our approach: We first pre-compute a
model of expected application behavior, built statically
from program source code; then, we monitor the program
and check its system call trace for compliance to the model
at runtime. The primary challenge is in automating model
generation, which we discuss next.

4. Models

In this section, we propose a sequence of models that we
use to specify expected application behavior: first, a trivial
model to illustrate the main idea; then, the callgraph model;
third, a refinement, the abstract stack model; and finally, the
low-overhead digraph model.

Each model is intended to satisfy a commonsoundness
property: false alarms should never occur. To achieve this
goal, we must make a number of mild assumptions about
our operating environment. We consider only portable C
code that has no implementation-defined behavior: for ex-
ample, we assume that there are no intentional array bounds
violations, NULL-pointer dereferences, or other memory
errors; we assume there is no function pointer arithmetic
or type-casting between function pointers and other point-
ers; and we assume there is no application-defined runtime
code generation. These assumptions are not critical: viola-
tions may introduce false alarms but will never cause us to
miss attacks we otherwise would have detected. Nonethe-
less, in our experience the security-critical applications in
widespread use do conform to these assumptions.

From a formal language viewpoint, all of our models in-
volve recognizing a sentence in a regular or context-free
language. However, this viewpoint is much less intuitive
than dealing directly with automata and will not be dis-
cussed further. For ease of discussion, we will refer to
terminating programs and finite or pushdown automata,

as appropriate. All of our results directly extend to non-
terminating programs.

4.1. A trivial model

We illustrate these ideas by describing a minimalist
example of an intrusion detection system following this
framework. LetS be the set of system calls that the ap-
plication can ever make. The set of allowable system call
traces—i.e., our model of expected behavior—will then be
exactly the regular languageS�. If, at runtime, we ever ob-
serve the application issuing some system call not inS, we
prevent the system call from executing, kill the application,
and sound the alarm.

This model is easy to derive with automated source anal-
ysis tools. Because in practice system calls may be easily
recognized in source code, the setS may be inferred easily
by simply walking the parse tree and pattern-matching for
system call invocations.

Such an approach is simple, easy to implement, sound,
and efficient, but it will fail to detect many attacks. No at-
tack that operates using just system calls fromS will ever
be detected, and in practice we can expect this failure mode
to be common ifS is too large. Another problem is that the
approach is too coarse-grained, since many common sys-
tem calls are too dangerous to allow without any restric-
tions. For example, if theopen() system call is included
in S, attackers will be free to modify any file whatsoever at
any time without fear of detection. Furthermore, this naive
approach scales poorly to large applications, which are ex-
actly the ones at greatest risk for intrusions, because large
applications yield large setsS. Consequently, a more pre-
cise model is needed.

4.2. The callgraph model

The foremost problem with the naive model described
above is that we have thrown away all information about
theorderingof the possible system calls. In this section we
show how to retain some ordering information.

One clean way to represent information on the ordering
of possible system calls is to express our model as a regular
language over�, the set of system calls. For ease of model
generation, it is convenient to use an equivalent represen-
tation of the model as a non-deterministic finite automaton
(NDFA). We describe next how to use a NDFA to charac-
terize the expected system call traces.

Building the model Deriving the model is a simple appli-
cation of control-flow analysis. We first build the control-
flow graphG = hV;Ei associated with the program source
code. We assume that each node of the control-flow graph
executes at most one system call and that we can recognize
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f(int x) {x ? getuid() : geteuid();x++;}g() {fd = open("foo", O_RDONLY);f(0); lose(fd); f(1);exit(0);} Exit(g)

Entry(g)
open()

close()

w

w’

v’

v

exit()

Entry(f)

getuid()

Exit(f)

geteuid()

Figure 1. An example C program (left), and its associated cal lgraph model (right). Transitions to
Wrong are omitted to avoid cluttering the diagram. Dashed lines in dicate interprocedural edges,
which are represented as �-transitions in the NDFA.

where system calls occur. Then we note that the control-
flow graph can naturally be viewed as a specification of a
NDFA with statespaceV [fWrongg, transitions induced byE, and alphabet�. Each edgev ! w 2 E of the control-
flow graph induces a transitionv a! w of the automaton, if
there is a system calla at nodev, or the�-transitionv �! w
otherwise;�-transitions represent transfer of control where
no system call is executed. Everyproper state(i.e., each
statev 6= Wrong) is considered an accepting state. The spe-
cial stateWrong is non-accepting and contains a self-loop
Wrong a! Wrong on everya 2 �; when a nodev con-
tains no outgoing transitions on some symbola 2 �, we
add an implicit transitionv a! Wrong. The resulting au-
tomaton is non-deterministic because in general we cannot
statically predict, for example, which branch of anif-then-
else expression will be taken at runtime. See Figure 1 for
an example.

We use this automaton as our model of expected be-
havior, so that an observed trace is accepted only if it is
accepted by the NDFA. We call this thecallgraph model.
Note that this model throws away a lot of information about
the execution of the application: in particular, we ignore
all of its internal state other than the program counter.
Nonetheless, it preserves a soundness property:

Claim. There are no false alarms when using the callgraph
model.

The claim follows from the observation that, by con-
struction, every possible path of execution through the
control-flow graph corresponds to an accepting path of the
NDFA, and thus every dynamically-possible execution trace
will be accepted by the NDFA.

Monitoring algorithm When monitoring the application,
we simulate the operation of the NDFA on the observed sys-

tem call trace, resolving non-determinism by exploring all
possible paths in breadth-first order. This requiresO(jV j)
operations per observed system call. Note that more ef-
ficient techniques exist—for instance, the NDFA may be
converted to a DFA, either ahead of time or on the fly, and
caching may be used to speed up the simulation [18]—
but we have not explored any of these alternatives. See
Section 5 for more implementation details, and Section 6
for measurements of our implementation’s performance and
detection power.

Function calls One issue not mentioned so far is how to
deal with function calls. After we generate a control-flow
graph for each procedure, we connect them together: we
split each call sitev into two nodesv; v0 and add extra edgesv ! Entry(f) andExit(f) ! v0 for each functionf that
could be called fromv. See the dashed edges in Figure 1
for an example. HereEntry(f) andExit(f) denote the
unique entry and exit nodes forf , as might be expected.
This so-calledmonomorphic(or context-insensitive) analy-
sis produces a single large graph that may be analyzed as
above.

Imprecision in the model One limitation of the call-
graph model is that it includes impossible paths, due to
the monomorphic treatment of function calls. In particular,
consider two call sitesv; w that both call the same functionf ; then the expanded control-flow graph will contain paths
of the formv ! Entry(f) ! � � � ! Exit(f) ! w0. See
Figure 1 for an illustrated example. Such an impossible path
cannot occur in any real execution, because function calls
will always return to the site where they were called from.
Unfortunately, a NDFA is unable to express this constraint,
so we end up with impossible paths through the automaton.

Impossible paths in the callgraph model are a problem in
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f(int x) {x ? getuid() : geteuid();x++;}g() {fd = open("foo", O_RDONLY);f(0); lose(fd); f(1);exit(0);}
Entry(f) ::= getuid() Exit(f)j geteuid() Exit(f)Exit(f) ::= �Entry(g) ::= open() vv ::= Entry(f) v0v0 ::= lose() ww ::= Entry(f) w0w0 ::= exit() Exit(g)Exit(g) ::= �

while (true)
casepop() ofEntry(f)) push(Exit(f)); push(getuid())Entry(f)) push(Exit(f)); push(geteuid())Exit(f) ) no-opEntry(g) ) push(v); push(open())v ) push(v0); push(Entry(f))v0 ) push(w); push(lose())w ) push(w0); push(Entry(f))w0 ) push(Exit(g)); push(exit())Exit(g) ) no-opa 2 � ) read and consumea from the input
otherwise) enter the error state,Wrong

Figure 2. The example C program again (left), with its associ ated context-free grammar (middle) and
the resulting abstract stack model (right).

practice. This imprecision causes our NDFA to be larger
than necessary, and attacks that follow these impossible
paths will remain undetected. As a consequence, intru-
sion detection systems based on the callgraph model may
in some cases be more permissive than we would like.

4.3. The abstract stack model

We next introduce theabstract stackmodel, which al-
lows us to characterize more precisely the set of possible
system call traces by eliminating impossible paths. The
idea is to model not only the program counter but also the
state of the call stack. We extend our model so that the set
of possible system call traces is allowed to form a context-
free language. It is then natural to represent this abstraction
of the program as a non-deterministic pushdown automaton
(NDPDA), or equivalently, a context-free grammar.

Building the NDPDA The pushdown automaton we con-
struct will provide an intuitive model of program behavior.
The state of the automaton will be an abstract summary of
the state of the application. In particular, the automaton’s
stack will form an abstract version of the program call stack:
each symbol on the automaton’s stack will correspond to a
single stack frame in the application’s call stack, where ev-
erything but the return address has been abstracted away.

The construction is as follows. We assume that we are
given a global control-flow graphG = hV;Ei that includes
interprocedural call edges. We generate a NDPDA with
stack alphabetV [�, input alphabet�, and transitions given
as follows. Suppose first that there is a nodev 2 V on the
top of the stack. Ifv is a function call site referencing a pro-
ceduref , we popv off the stack, push the corresponding
return sitev0, and finally pushEntry(f) on to the stack. If

v is a function exit node, we popv. If v is a non-call node,
we popv, pushs if v issues the system calls 2 � (other-
wise, we do not push anything for nodes that do not make
system calls), non-deterministically select some successorw of v with v ! w 2 E, and finally pushw. On the other
hand, ifs 2 � is at the top of the stack, we attempt to matchs against the current input symbols0: if s = s0, we consume
the current input symbol and pops off the stack; otherwise,
we enter the stateWrong and reject the input string. As in
the callgraph model, all proper states are accepting states.
See Figure 2 for an example.

This construction of the NDPDA ensures that every se-
quence of operations to the program call stack during a nor-
mal application execution will be among the set of paths ex-
plored during the simulation of NDPDA. Since the NDPDA
is non-deterministic, other paths may also be explored, but
we can be sure that the correct one will not be omitted. At
the same time, the increased precision of the abstract stack
model makes it less likely that real attacks will go unde-
tected.

The context-free model In our implementation, the ND-
PDA is constructed directly. However, as the construction is
rather detailed, it may be easier to consider building an (al-
most, as explained below) equivalent context-free grammar
for the program, with non-terminals taken fromV , termi-
nals in� (the set of system calls), and rules given as fol-
lows4. If v is a function call site with corresponding return
sitev0, we add the rulev ::= Entry(f) v0 for each functionf that could be called fromv. For each non-call nodev and
each successorw of v, we add the rulev ::= a w if there is
a system calla 2 � atv, or the rulev ::= w otherwise. Fi-

4There are some complications withsetjmp() and other non-standard
forms of control flow; see Section 5.1 for extensions to handle them.
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nally, for each functionf in the program, we add the�-ruleExit(f) ::= �. This grammar is quite natural [27, 28, 6, 7].
The simplification referred to above is that the NDPDA,

by construction, also accepts all prefixes of sentences gen-
erated by the grammar above. The actual grammar would
be more complicated if it took this into account.

The NDPDA described earlier may be obtained by ap-
plying the trivial top-down construction to the context-
free grammar obtained above (similar toLL(0) parsing,
except that we keep the conflicts and thus obtain a non-
deterministic automaton). This top-down construction is
convenient because its operation corresponds closely to ex-
ecution in procedural languages such as C. See Figure 2 for
an example.

Monitoring algorithm To detect attacks, we must moni-
tor the system calls issued by the application and simulate
the operation of the NDPDA on those inputs. It turns out
that efficient simulation of the NDPDA is a significant the-
oretical and engineering challenge, especially as we scale
up to intrusion detection on very large applications.

The most naive approach is to exhaustively search
through all possible non-deterministic choices of the ND-
PDA. In other words, at each time step, we maintain a list
of all possible stack configurations of the NDPDA; when
a new system call is observed, for each previously possi-
ble configuration we compute the set of new configurations
the NDPDA might transition to, and update the list of possi-
ble stack configurations. However, in practice this approach
is untenable for any but the simplest application, because
these lists grow exponentially large in the length of the sys-
tem call trace (in fact, even infinitely large, in the presence
of left-recursion).

Less naively, we might hope that standard parsing al-
gorithms might be applicable here. Of course, we cannot
use standard parsers (such asya) because our NDPDA is
non-deterministic. It is easy to see that, for every context-
free grammar�, there is some program which generates�,
and in practice, real applications produce grammars with
considerable non-determinism and complexity. So, we need
an efficient algorithm for online parsing of general context-
free languages.

It is also important to have a top-down parsing routine.
As described in Section 5, dealing with some of the special
features of the Unix runtime environment requires us to oc-
casionally step outside of the context-free framework and
perform operations directly on the set of possible stack con-
figurations. Real programs execute in a roughly top-down
fashion—we start executingmain() before executing any
of its callees—so this seems to rule out bottom-up pars-
ing. Unfortunately, much of the work in the literature on
recognizing general context-free languages (e.g., the CYK,
Earley, Tomita, and GLR techniques [37, 10, 16, 33]) uses

bottom-up methods.
Consequently, we were forced to develop new techniques

for efficient top-down parsing. A full description of our al-
gorithm is outside of the scope of this paper, but we list
a few useful properties of the algorithm that make it well
suited for our purposes:� It supports online parsing: as each system call is ob-

served, we can decide whether the resulting partial
trace forms the prefix of a sentence in the context-free
language, as required for real-time intrusion detection.� It is relatively efficient: like other general context-free
recognizers, its worst-case running time is cubic in the
length of the system call trace. This is likely to be
too slow for large applications, but is much better than
exponential-time solutions. In practice, we encounter
cubic-time behavior only occasionally.� Most importantly, it supports real-time access to the set
of possible top-down parse trees. The key data struc-
ture is a representation of the set of possible call stacks
as a regular language over the alphabet of stack sym-
bols. This lets us modify this data structure directly
whenever we need to step outside of the context-free
framework.

More details on this algorithm are available elsewhere [34].

4.4. The digraph model

We next introduce a very simple approach which com-
bines some of the advantages of the callgraph model in a
simpler formulation. The basic approach, first introduced
in previous work on runtime intrusion detection [14], is to
consider windows of consecutive system calls.

Our model will thus be a list of the possiblek-sequences
of consecutive system calls, starting at an arbitrary point
during program execution. In our prototype implementa-
tion, we consider only the special casek = 2 for simplicity.
Note thatk-sequences of system calls withk = 2 are often
referred to asdigraphs, so we call this the digraph model.
We consider here both the special case of digraphs and the
general case.

Building the model We could derive the set of possiblek-sequences from the control-flow graph in a straightfor-
ward fashion, but we observe that there is a more precise
approach available if we use the context-free language of
possible system call traces,L(�), as introduced in Sec-
tion 4.3. To determine whether the sequences 2 �k can
occur in a system call trace during normal application exe-
cution, we simply test whether(��s��)\L(�) 6= ;, which
is effectively computable [18, 27]. Repeating this test for
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eachs 2 �k gives a general algorithm to build the de-
sired model. Unfortunately, this precomputation has run-
ning time�(k3�jEj� j�jk), which is exponential ink. In
practice, it is slow enough that we have only experimented
with thek = 2 case.

Monitoring algorithm Detecting attacks then becomes
easy once we have performed the above precomputation to
build a list of the allowedk-sequences. We keep a history of
the lastk � 1 system calls, and when we see a new system
call, we check whether the resultingk-sequence is allowed.
Thus, the runtime monitoring algorithm is extremely effi-
cient for this model; the trade-off is that the digraph model
is less precise than the callgraph or abstract stack model,
and thus can be expected to miss more attacks.

5. Implementation issues

We sketched above three theoretical frameworks for im-
plementing intrusion detection using static analysis. In
practice, though, there are a number of complications that
arise when implementing these ideas. We discuss here some
of the important implementation challenges and how to han-
dle them.

5.1. Non-standard control flow

Implementations of control-flow analysis, when in-
tended for optimization, often give up in the presence of
non-local control flow (such as signals,setjmp(), and so
on). However, we have found that, in practice, real applica-
tions of interest for intrusion detection often use these fea-
tures. Therefore, we describe how to augment the modelling
frameworks described above to incorporate these forms of
non-standard control flow.

Function pointers To build the program call-graph in the
presence of function pointers, it is crucial to be able to
predict the possible targets of every indirect call througha
function pointer. Many sophisticated algorithms for pointer
analysis are available in the literature [11, 31, 30], but inour
implementation we simply assume that every pointer could
refer to any function whose address has been taken. Empir-
ically, even this very crude technique seems to suffice for
our purposes.

Signals Many operating systems allow applications to
register a signal handler to be executed upon reception of
a signal. It is straightforward to statically recognize sig-
nal handlers: we simply look for system calls of the formsignal(i,fp), which binds the handlerfp to the signali
so that when this signal is received, the function referred to

by the function pointerfp will be called. Consequently, the
real challenge is to augment the model to represent these
additional possibilities for control flow.

Naively, one might consider adding to the control-flow
graph an extra edge from each node to each possible signal
handler to represent this additional control flow. This naive
solution would work, but it adds an enormous amount of ex-
tra non-determinism to the control-flow graph, so our anal-
ysis would become less precise: the intrusion detection sys-
tem would become significantly slower (because we need to
follow more possible paths in the control-flow graph) and
poorer at recognizing intrusions (because real attacks might
mimic unlikely paths through signal handlers and thereby
avoid detection). We would prefer to model signals without
incurring these costs.

Fortunately, there is a clean solution available. We ex-
ploit the presence of a runtime component in our system:

Principle 1. If you can arrange to receive an extra event
whenever some exceptional path (such as invocation of a
signal handler) might be taken, you can often improve the
precision of the model.

In this case, we arrange to monitor not only the system
calls the application makes but also the signals the applica-
tion receives5, and we ensure that all the extra paths in the
control-flow graph arepre-guardedby an initial signal re-
ception event. In many Unix operating systems, all signal
handlers invoke thesigreturn() system call after they re-
turn, so we also add apost-guardto the end of each extra
path, too.

It is straightforward to augment the control-flow graph
to ensure that every execution of a signal handler will be
bracketed by both a pre- and post-guard. These extra paths
in the control-flow graph will not be triggered unless the
appropriate signal is received, and to save space they may be
implicitly represented and only re-generated on demand, so
they are effectively invisible except in the cases where they
are necessary. These techniques provide a precise, efficient,
and simple way to extend any of the models in Section 4 to
reflect the semantics of signals.

The setjmp() primitive ANSI C provides a form of
non-local control flow that is sometimes used to provide
a crude form of exception handling or error recovery: thesetjmp() primitive saves the stack pointer and other regis-
ters, and thenlongjmp() may be called by a subroutine to
roll the registers, and hence the stack, back to its saved state.
In the callgraph model, we may simply add an extra tran-
sition from eachlongjmp() to every possiblesetjmp(),

5The ability to monitor signals is conveniently already available with
most existing mechanisms for process tracing, since it is used by some
debuggers.
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but this will not work for the abstract stack model becauselongjmp() modifies the call stack.
We do not know of a good static approach to call stack

analysis in the presence ofsetjmp(), but fortunately, there
is no need to solve this problem statically. Instead, we ex-
tend the runtime monitoring agent. Our monitor maintains a
running list of all call stacks that were possible when somesetjmp() call was visited earlier in this execution trace.
Eachlongjmp() call can be emulated by adding this accu-
mulated list to the automaton’s current set of states. Since
sets of states are represented as regular languages in the ab-
stract stack model (see Section 4.3), the union operations
may be implemented efficiently.

As a future extension, we might also enforce the con-
straint that returning from a function activation invalidates
anysetjmp() it may have called. This would allow us to
garbage-collect oldsetjmp() states (thereby reducing stor-
age costs by some unknown amount) and to exclude impos-
siblelongjmp() targets (thereby improving precision and
attack detection power). So far, though, we have not found
the need. Our experience has been thatsetjmp() is typ-
ically used just often enough that it cannot be completely
ignored but rarely enough that the burden of the above sim-
ulation techniques is minimal.

In any case, our experience withsetjmp() suggests the
following lesson for hybrid static-dynamic systems6:

Principle 2. Some program properties that are difficult to
infer statically may become easier to model satisfactorily
when the burden is offloaded to a runtime agent, where
available.

5.2. Other modelling challenges

Libraries Our approach requires a model for each library
function that might be called. Therefore, we use a modu-
lar analysis to build these models. In particular, we mod-
ified theg compiler to output intermediate analysis out-
put files alongside each object file as it compiled, and we
modified the linker to combine the intermediate files into a
whole-program analysis. A side benefit was that we could
analyze existing software packages by simply using the pro-
vided Makefiles to compile them.

6In the digraph model, neither Principle 1 nor 2 is much help, since no
help is available from the runtime agent nor is there any convenient way to
monitorsetjmp() andlongjmp() calls at runtime. Thus, we are forced
to use more conservative techniques. Consider temporarilyextending the
alphabet with the symbolsx and$ to representsetjmp() andlongjmp()
invocations. We infer that digraphs1s2 is possible in some program ex-
ecution only if (1)s1s2 is a possible digraph in the original (unextended)
language, or (2) boths1$ is a possible digraph when the language is ex-
tended with$ andxs2 is a possible digraph when the language is extended
with x and$.

We found that library code taxed the limits of our tool
more thoroughly than most applications, and a dispropor-
tionate amount of our effort was spent on the C libraries.
For instance, the GNUstdio implementation uses func-
tion pointers extensively to emulate an object-oriented pro-
gramming style; with our naive pointer analysis, the in-
ferred models were too imprecise, so we replaced our au-
tomated analysis results with hand-crafted models. In con-
trast, the database librarylibdb also uses function pointers
extensively to parametrize database implementations, butin
this case we were willing to accept the imprecision. As a
third example, the GNU ELF libraries make heavy use of
bothsetjmp() and function pointers to implement excep-
tion handling, so we resorted to refining the inferred model
by hand in some places to improve its precision.

There are many disadvantages to hand-built models: they
are time-consuming to construct; they are difficult to get
right (and thus unsoundness and false alarms are a risk); and
they make it unpleasant to keep up with changes to the code.
Ideally, we would have preferred a more precise automatic
analysis so that we could avoid these disadvantages, but in
practice even our crude techniques were generally sufficient
to get the job done without compromising our primary goals
in the few cases where manual analysis was necessary.

Dynamic linking Dynamically linked libraries pose an-
other challenge, because they force us to update the model
at runtime. In our implementation, we predict in advance
the set of libraries which might be linked in and build mod-
els for all of them from source. This can introduce false
alarms if our prediction becomes out of date (when, e.g., a
new version of the library becomes available), which means
that everything must be updated whenever the underlying
libraries are. This is not a fundamental limitation, and a
more satisfying solution would be to build a model at run-
time from object code, but we have not explored this direc-
tion because it has not been necessary in our experience. In
any case, binding applications to libraries statically hassub-
stantial security benefits, because it prevents introduction of
Trojan horses via dynamic linking attacks.

Threads Threads pose yet another challenge, because the
context-switching operation introduces another type of im-
plicit control flow. If it were possible to reliably receive
‘thread context-switch’ events (see Principle 1), handling
threads would be straightforward; this is no problem for
kernel threads, but unfortunately, user threads pose a thorny
challenge, and we know of no good general solution. A sec-
ond issue is that threaded code may contain security vulner-
abilities due to synchronization bugs that we do not know
how to detect. Because of these challenges, and because no
security-critical application we examined used threads, our
prototype implementation does not support threaded code.
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5.3. Optimizations

Irrelevant system calls Up to now we have described an
intrusion detection system that monitors all system calls the
application invokes, and we originally expected this to be
optimal. However, we found that ignoring, e.g., thebrk()
system call can greatly improve performance by reducing
the size and ambiguity of the model: in many programs,
memory allocation can occur just about anywhere, so seeing
abrk() system call gives us very little contextual informa-
tion. This may cause us to miss denial-of-service attacks,
but those are beyond the scope of this paper.

In some cases, ignoring certain system calls can even im-
prove the precision of the model. It may sound paradoxical
that throwing away information can improve precision, but
consider the digraph model: excluding very common sys-
tem calls gives more context. It is useful to be able to enable
this optimization on a per-application basis.

System call arguments The most important optimization
is based on the observation that we can gain quite a bit of ex-
tra information about the application behavior by examining
the arguments to each system call. Since we can often stat-
ically predict some system call arguments with little effort,
we might as well check them at runtime. We recognize lex-
ically constant system call arguments in our prototype and
found that even this extremely crude technique provides no-
ticeable improvements to both precision and performance;
see the measurements in the next section.

6. Evaluation

In this section we measure the performance of our three
approaches (theabstract stack, callgraph, and digraph
models) on a number of typical security-critical applica-
tions that one might want to monitor for intrusions. For each
model, we measure two variants: a basic implementation
that ignores system call arguments, and then an improved
implementation that checks all system call arguments that
can be statically predicted. In each case, we focus on two
key metrics: runtime overhead (performance), and robust-
ness of detection against targeted attack (precision). As
will become clear, our results indicate that there is a strong
tradeoff between performance and precision.

Performance In Figure 3, we show the runtime overhead
incurred by our system when applied to four representative
applications with known security vulnerabilities,finger,qpopper, promail, andsendmail. Of these,finger
is the smallest (at 1K lines of code, excluding comments,
blank lines, and libraries), andsendmail is the largest (at
32K lines); the other two are in the middle. The height of

each bar in Figure 3 indicates the performance overhead of
each model, measured in seconds of extra computation per
transaction7.

The figures use shading to show the effect of checking
system call arguments. One might expect that checking ar-
guments could improve performance by reducing ambiguity
in the model and thus reducing the number of possible paths
through the model that we need to explore at runtime. The
measurements confirm this hypothesis, showing that—even
though we implemented only an extremely crude data-flow
analysis—the performance benefits are substantial.

We initially expected that, due to its complexity, the ab-
stract stack model would be consistently slower than the
callgraph model. This is partially confirmed by our experi-
ments, but we were surprised to find many exceptions. For
instance, in the case ofpromail, it appears that the im-
proved precision provided by the abstract stack model more
than makes up for the complexity of this model. In general,
moving to more precise models may reduce the degree of
non-determinism and thereby reduce the number of possi-
ble paths explored at runtime.

Note that there is a wide variation in running times. The
digraph models are consistently extremely fast (the over-
head is too small to measure), but the other models are
sometimes vastly slower. Forsendmail, the callgraph and
abstract stack models were so slow that we forcibly termi-
nated the experiment after an hour of computation. Since
our goal is for real-time intrusion detection, imposing more
than a few seconds of latency onto any interactive applica-
tion is absolutely unacceptable; an hour is clearly several
orders of magnitude too much. Consequently, for some ap-
plications, only the digraph model is fast enough; for oth-
ers, the more sophisticated callgraph or abstract stack mod-
els are also workable. We conclude that, in all cases, at least
one of the approaches provides acceptable performance, but
the type of model must be chosen on a per-application basis.

Our prototype implementation has known problems that
make its performance sub-optimal. See Section 7.

Mimicry attacks To motivate the need for precise mod-
els, we introduce a new class of attacks against intrusion
detection systems, themimicry attack. Recall that one of
our primary design goals is to detect not only the attacks
that are common today, but also to detect the attacks of the
future. Furthermore, our model of the application proba-
bly cannot be kept secret from attackers. Consequently, our
models need to be precise enough that there is no way for
an attacker to cause any harm without deviating from the

7We use the word transaction to denote a single interactive event, such
as delivery of a piece of email. For interactive applications that are not
compute-intensive, we believe the main goal is to avoid introducing more
than a few seconds of latency per transaction, and so we measure absolute
rather than relative overheads. All measurements were performed on a 450
MHz Pentium II running Java, using IBM’s JIT for Linux.
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Figure 3. Overhead imposed by the run-
time monitor for four representative ap-
plications, measured in seconds of extra
computation per transaction.

Figure 4. Precision of each of the models,
as characterized by the average branching
factor (defined later in Section 6). Small
numbers represent better precision.

Notes on both figures: For each application, we show measurements for three models using a cluster of three vertical bars:the abstract
stack model (leftmost bar), the callgraph model (middle), and the digraph model (rightmost). Each vertical bar uses shading to represent
two measurements: the shorter, solid-colored segment represents the case where arguments are checked; the total height of the bar
(including both the solid-colored and lightly-shaded regions) shows the case when arguments are ignored.

model, even when the attacker can predict what model we
are using. Otherwise, attackers will be free to develop ma-
licious exploit code that mimics the operation of the appli-
cation, staying within the confines of the model and thereby
evading detection by our system despite its harmful effects.

In general, if the attacker somehow obtains control of
the application when our intrusion detection automata is in
the states, and if some insecure states0 is reachable froms through any path in the automata, then the attacker will
be able to bring the system to an insecure state without risk
of detection by synthesizing the system calls that make up
the paths ! � � � ! s0. We call this amimicry attack, and
we expect that, as intrusion detection becomes more widely
deployed, mimicry attacks are unavoidable [26].

Note that imprecise models contain impossible paths,
which introduces a vulnerability to mimicry attacks if any
of those paths can reach an insecure state. Consequently,
the primary defense against mimicry attacks lies in high-
precision models.

Precision Unfortunately, we do not know the right way8

to quantify an intrusion detection system’s degree of robust-
ness against mimicry attacks, so we do not have a complete

8In practice, it may often be difficult even to identify just the set of
insecure states of the system.

characterization of the precision of our models. Nonethe-
less, we will attempt to give some intuition for the preci-
sion of our models by applying the following metric. Imag-
ine freezing the intrusion detection system in the middle of
some application execution trace. There is some setS of
system calls that would be allowed to come next without
setting off any alarms. We define thebranching factorto
be the size ofS. A small branching factor means that the
intruder has few choices about what to do next if she wishes
to evade detection, and so we can expect that small branch-
ing factors leave the intruder most constrained and least able
to cause harm. Finally, because we cannot predict at what
point during execution the attacker might obtain control of
the application, we suggest to measure theaverage branch-
ing factorover all normal execution traces. We stress that
this metric is insufficient on its own, but it seems to yield a
useful first approximation.

Figure 4 shows the precision of our models on our
four sample applications, under the average branching fac-
tor metric. We can see that checking system call ar-
guments provides substantial precision improvements, be-
cause it reduces the number of possible paths through the
model, and because some system calls are harmless when
their arguments are fixed in advance. For instance, anopen("/et/motd", O_RDONLY) call is harmless when
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its arguments are statically known, but otherwise could po-
tentially be exploited by attackers to overwrite arbitraryfiles
on the system. Our experience is that unchecked system call
arguments greatly increase our exposure to mimicry attacks.
Since checking arguments improves both performance and
precision, we conclude that it should always be enabled.

We can also see that, when system call arguments are
checked, the abstract stack model is much more precise than
the callgraph model, which is itself more precise than the
digraph model.

We have also examined the generated models by hand
to evaluate how much harm a sophisticated attacker could
cause using mimicry techniques. We are confident that all
three of thefinger models leave very little room for at-
tack, due to the fact that thefinger source code does lit-
tle else but open a network connection and access world-
readable files on the system. Results for the other applica-
tions, though, are mixed. The digraph model seems unlikely
to resist a mimicry attack, and generally we feel it should
not be relied upon for defense against malicious code spe-
cially tailored to fool our system. However, the abstract
stack model seems to do fairly well: we believe it would
successfully limit the harmful effects of any compromise inqpopper or promail. On the other hand, forsendmail,
the generated abstract stack model is too complex for us to
make any determination.

We consider it an important open problem to develop a
metric or methodology for quantifying the resistance of in-
trusion detection systems to unforeseen attacks, such as the
mimicry attacks introduced above.

Attacks detected We have tested our system on a number
of known attacks from the past decade or so. For instance,
each of the four applications discussed above has a known
security vulnerability; we confirmed that we were able to
detect the known attack on those applications.

Probably the most common class of attacks we detect
are buffer overruns, which seem to account for perhaps half
of all attacks in recent years [8, 35]. Because most exist-
ing exploit scripts grab full root privilege and take other
distinctive actions (such as launching a shell under the at-
tacker’s control) immediately after exploiting the overrun
vulnerability, detection is typically straightforward for our
tool. Our tool may even be overkill for detecting misbehav-
ior this blatant—many other systems will also detect these
attacks, albeit with substantial false alarm rates—but an un-
usual feature of our tool is that it is also designed to detect
some ‘stealthy’ attacks, as well.

Our approach is also able to detect Trojan horses in
trusted software. One current favorite of today’s attackers
is therootkit toolkit, which replaces some system utili-
ties with a version that contains a backdoor. We verified
that our implementation was able to detect when some of

these backdoors were exercised (which causes the behavior
to deviate from that specified by the original source code).

The most interesting feature of our approach is that it can
also detect more exotic attacks, even ones that the designers
themselves did not know about. For instance, one extremely
subtle attack exploited the ability to pass environment vari-
ables totelnetd to cause the dynamic linker to link with a
shared library provided by the adversary; our system would
have detected this attack, and any other dynamic-linking
attack that might be discovered in the future, because our
model is generated statically with the correct library. More
recently, format string attacks have provided another un-
expected way to introduce malicious code into vulnerable
applications; since our detection mechanism makes no as-
sumptions about how malicious code may be introduced,
we can expect our system to apply to format string attacks,
as well as to any other ways to take control of vulnerable
applications that may be discovered in the future. We feel
that these examples illustrate the importance of detecting
unforeseen attacks.

Despite these successes, we feel strongly that our tool
should not be used as the sole defense against any of these
attacks, but instead should be used to complement other
techniques. Prevention is often a more effective barrier,
and intrusion detection systems are usually best viewed as
a backup layer in case the main line of defense is breached.

7. Future work

This work opens up many avenues for future research.
The main limitation of our approach is that the run-time
overhead is very high for some automata; however, we
expect that we could achieve better performance by using
more advanced static analysis to get more precise models.
Also, the prototype was written in Java; we could recode our
system in C or assembly language and directly integrate it
into the operating system kernel to reduce the performance
overhead substantially. This work also raises the intrigu-
ing possibility of reusing the specification that we generate
to automatically verify properties of security-critical pro-
grams with a model checker. We note that our callgraph
model is a finite automaton that appears nearly ideal for a
model checker. Our stack model will be more challenging
to model check, but there has been theoretical work in this
area [5, 13, 32, 36, 4].

8 Conclusions

We have successfully applied static program analysis to
intrusion detection. Our system scales to handle real world
programs. Also, our approach is automatic: the program-
mer or system administrator merely needs to run our tools
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on the program at hand. All other automatic approaches
to intrusion detection to date have been based on statisti-
cal inference, leading to many false alarms; in contrast, our
approach is provably sound — when the alarm goes off,
something has definitely gone wrong. Nonetheless, we can
immediately detect if a program behaves in an impossible
(according to its source) way, thus detecting intrusions that
other systems miss.

We relied on a strategic combination of static analysis
and dynamic monitoring. This combination yields better
results than either method alone and presents a promising
new approach to the intrusion detection problem.
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